【含金量最高】2018-【公卫执业医师】生物化学【考点解读】-第8章
2018年01月25日 来源:来尚学教育第八章 蛋白质降解与氨基酸代谢
一、 蛋白质消化、降解及氮平衡
1、 蛋白质消化吸收
哺乳动物的胃、小肠中含有胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶、羧肽酶、氨肽酶、弹性蛋白酶。经上述酶的作用,蛋白质水解成游离氨基酸,在小肠被吸收。肠粘膜细胞还可吸收二肽或三肽,吸收作用在小肠的近端较强,因此肽的吸收先于游离氨基酸。
2、 蛋白质的降解
人及动物体内蛋白质处于不断降解和合成的动态平衡。成人每天有总体蛋白的1%~2%被降解、更新。不同蛋白的半寿期差异很大,人血浆蛋白质的t1/2约10天,肝脏的t1/2约1~8天,结缔组织蛋白的t1/2约180天,许多关键性的调节酶的t1/2 均很短。
真核细胞中蛋白质的降解有两条途径:
一条是不依赖ATP的途径,在溶酶体中进行,主要降解外源蛋白、膜蛋白及长寿命的细胞内蛋白。另一条是依赖ATP和泛素的途径,在胞质中进行,主要降解异常蛋白和短寿命蛋白,此途径在不含溶酶体的红细胞中尤为重要。
泛素是一种8.5KD(76a.a.残基)的小分子蛋白质,普遍存在于真核细胞内。一级结构高度保守,酵母与人只相差3个a.a残基,它能与被降解的蛋白质共价结合,使后者活化,然后被蛋白酶降解。
3、 氨基酸代谢库
食物蛋白中,经消化而被吸收的氨基酸(外源性a.a)与体内组织蛋白降解产生的氨基酸(内源性a.a)混在一起,分布于体内各处,参与代谢,称为氨基酸代谢库。
氨基酸代谢库以游离a.a总量计算。肌肉中a.a占代谢库的50%以上。肝脏中a.a占代谢库的10%。肾中a.a占代谢库的4%。血浆中a.a占代谢库的1~6%。
肝、肾体积小,它们所含的a.a浓度很高,血浆a.a是体内各组织之间a.a转运的主要形式。
4、 氮平衡
食物中的含氮物质,绝大部分是蛋白质,非蛋白质的含氮物质含量很少,可以忽略不计。
氮总平衡:机体摄入的氮量和排出量,在正常情况下处于平衡状态。即,摄入氮=排出氮。
氮正平衡:摄入氮>排出氮,部分摄入的氮用于合成体内蛋白质,儿童、孕妇。
氮负平衡:摄入氮<排出氮。饥锇、疾病、衰老。
二、 氨基酸分解代谢
氨基酸的分解代谢主要在肝脏中进行。氨基酸的分解代谢分一般分解代谢和个别氨基酸分解代谢。一般分解代谢分为脱氨基和脱羧基作用。
氨基酸的分解代谢一般是先脱去氨基,形成的碳骨架可以被氧化成CO2和H2O,产生ATP ,也可以为糖、脂肪酸的合成提供碳架。
1、 脱氨基作用
在动物中主要在肝脏中进行
1) 氧化脱氨基
第一步,脱氢,生成亚胺。第二步,水解。
生成的H2O2有毒,在过氧化氢酶催化下,生成H2O+O2↑,解除对细胞的毒害。
催化氧化脱氨基反应的酶(氨基酸氧化酶)
(1)、 L—氨基酸氧化酶
有两类辅酶,E—FMN, E—FAD(人和动物)
对下列a.a不起作用:Gly、β-羟氨酸(Ser、 Thr)、二羧a.a( Glu、 Asp)、二氨a.a (Lys、 Arg)真核生物中,真正起作用的不是L-a.a氧化酶,而是谷氨酸脱氢酶。
(2)、 D-氨基酸氧化酶 E-FAD
有些细菌、霉菌和动物肝、肾细胞中有此酶,可催化D-a.a脱氨。
(3)、 Gly氧化酶 E-FAD
使Gly脱氨生成乙醛酸。
(4)、 D-Asp氧化酶 E-FAD
E-FAD 兔肾中有D-Asp氧化酶,D-Asp脱氨,生成草酰乙酸。
(5)、 L-Glu脱氢酶 E-NAD+ E-NADP+
真核细胞的Glu脱氢酶,大部分存在于线粒体基质中,是一种不需O2的脱氢酶。
此酶是能使a.a直接脱去氨基的活力最强的酶,是一个结构很复杂的别构酶。在动、植、微生物体内都有。ATP、GTP、NADH可抑制此酶活性。ADP、GDP及某些a.a可激活此酶活性。因此当ATP、GTP不足时,Glu的氧化脱氨会加速进行,有利于a.a分解供能(动物体内有10%的能量来自a.a氧化)。
2) 非氧化脱氨基作用(大多数在微生物的中进行)
①还原脱氨基;②水解脱氨基;③脱水脱氨基;④脱巯基脱氨基;⑤氧化-还原脱氨基两个氨基酸互相发生氧化还原反应,生成有机酸、酮酸、氨;
⑥脱酰胺基作用:
谷胺酰胺酶:谷胺酰胺 + H2O → 谷氨酸 + NH3
天冬酰胺酶:天冬酰胺 + H2O → 天冬氨酸 + NH3
谷胺酰胺酶、天冬酰胺酶广泛存在于动植物和微生物中
3) 转氨基作用
转氨作用是a.a脱氨的重要方式,除Gly、Lys、Thr、Pro外,a.a都能参与转氨基作用。
转氨基作用由转氨酶催化,辅酶是维生素B6(磷酸吡哆醛、磷酸吡哆胺)。转氨酶在真核细胞的胞质、线粒体中都存在。
转氨基作用:是α-氨基酸和α-酮酸之间氨基转移作用,结果是原来的a.a生成相应的酮酸,而原来的酮酸生成相应的氨基酸。
不同的转氨酶催化不同的转氨反应。
大多数转氨酶,优先利用α-酮戊二酸作为氨基的受体,生成Glu。如丙氨酸转氨酶,可生成Glu,叫谷丙转氨酶(GPT)。肝细胞受损后,血中此酶含量大增,活性高。肝细胞正常,血中此酶含量很低。
动物组织中,Asp转氨酶的活性最大。在大多数细胞中含量高,Asp是合成尿素时氮的供体,通过转氨作用解决氨的去向。
4) 联合脱氨基
单靠转氨基作用不能最终脱掉氨基,单靠氧化脱氨基作用也不能满足机体脱氨基的需要,因为只有Glu脱氢酶活力最高,其余L-氨基酸氧化酶的活力都低。
机体借助联合脱氨基作用可以迅速脱去氨基 。
(1) 以谷氨酸脱氢酶为中心的联合脱氨基作用
氨基酸的α-氨基先转到α-酮戊二酸上,生成相应的α-酮酸和Glu,然后在L-Glu脱氨酶催化下,脱氨基生成α-酮戊二酸,并释放出氨。
(2) 通过嘌呤核苷酸循环的联合脱氨基做用
骨骼肌、心肌、肝脏、脑都是以嘌呤核苷酸循环的方式为主
2、 脱羧作用
生物体内大部分a.a可进行脱羧作用,生成相应的一级胺。
a.a脱羧酶专一性很强,每一种a.a都有一种脱羧酶,辅酶都是磷酸吡哆醛。
a.a脱羧反应广泛存在于动、植物和微生物中,有些产物具有重要生理功能,如脑组织中L-Glu脱羧生成r-氨基丁酸,是重要的神经介质。His脱羧生成组胺(又称组织胺),有降低血压的作用。Tyr脱羧生成酪胺,有升高血压的作用。
但大多数胺类对动物有毒,体内有胺氧化酶,能将胺氧化为醛和氨。
3、 氨的去向
氨对生物机体有毒,特别是高等动物的脑对氨极敏感,血中1%的氨会引起中枢神经中毒,因此,脱去的氨必须排出体外。
氨中毒的机理:脑细胞的线粒体可将氨与α-酮戊二酸作用生成Glu,大量消耗α-酮戊二酸,影响TCA,同时大量消耗NADPH,产生肝昏迷。
氨的去向:
(1)重新利用 合成a.a、核酸。
(2)贮存 Gln,Asn
高等植物将氨基氮以Gln,Asn的形式储存在体内。
(3)排出体外
排氨动物:水生、海洋动物,以氨的形式排出。
排尿酸动物:鸟类、爬虫类,以尿酸形式排出。
排尿动物:以尿素形式排出。
氨的转运(肝外→肝脏)
1) Gln转运 Gln合成酶、Gln酶(在肝中分解Gln)
Gln合成酶,催化Glu与氨结合,生成Gln。
Gln中性无毒,易透过细胞膜,是氨的主要运输形式。
Gln经血液进入肝中,经Gln酶分解,生成Glu和NH3。
2) 丙氨酸转运(Glc-Ala循环)
肌肉可利用Ala将氨运至肝脏,这一过程称Glc-Ala循环。
丙氨酸在PH7时接近中性,不带电荷,经血液运到肝脏
在肌肉中,糖酵解提供丙酮酸,在肝中,丙酮酸又可生成Glc。
肌肉运动产生大量的氨和丙酮酸,两者都要运回肝脏,而以Ala的形式运送,一举两得。
氨的排泄
1) 直接排氨
排氨动物将氨以Gln形式运至排泄部位,经Gln酶分解,直接释放NH3。游离的NH3借助扩散作用直接排除体外。
2) 尿素的生成(尿素循环)
排尿素动物在肝脏中合成尿素的过程称尿素循环。1932年,Krebs发现,向悬浮有肝切片的缓冲液中,加入鸟氨酸、瓜氨酸、Arg中的任一种,都可促使尿素的合成。
尿素循环途径(鸟氨酸循环):
(1)、 氨甲酰磷酸的生成(氨甲酰磷酸合酶I)
肝细胞液中的a.a经转氨作用,与α-酮戊二酸生成Glu,Glu进入线粒体基质,经Glu脱氢酶作用脱下氨基,游离的氨(NH4+)与TCA循环产生的CO2反应生成氨甲酰磷酸。
氨甲酰磷酸是高能化合物,可作为氨甲酰基的供体。
氨甲酰磷酸合酶I:存在于线粒体中,参与尿素的合成。
氨甲酰磷酸合酶II:存在于胞质中,参与尿嘧啶的合成。
N-乙酰Glu激活氨甲酰磷酸合酶 I、II
(2)、 合成瓜氨酸(鸟氨酸转氨甲酰酶)
鸟氨酸接受氨甲酰磷酸提供的氨甲酰基,生成瓜氨酸。
鸟氨酸转氨甲酰酶存在于线粒体中,需要Mg2+作为辅因子。
瓜氨酸形成后就离开线粒体,进入细胞液。
(3)、 合成精氨琥珀酸(精氨琥珀酸合酶)
(4)、 精氨琥珀酸裂解成精氨酸和延胡索素酸(精氨琥珀酸裂解酶)
精氨琥珀酸 → 精氨酸 + 延胡索素酸
此时Asp的氨基转移到Arg上。
来自Asp的碳架被保留下来,生成延胡索酸。延胡索素酸可以经苹果酸、草酰乙酸再生为天冬氨酸,
(5)、 精氨酸水解生成鸟氨酸和尿素
尿素形成后由血液运到肾脏随尿排除。
尿素循环总反应:
NH4+ + CO2 + 3ATP + Asp + 2H2O → 尿素 + 2ADP + 2Pi + AMP + Ppi + 延胡索酸
形成一分子尿素可清除2分子氨及一分子CO2 , 消耗4个高能磷酸键。
联合脱-NH2合成尿素是解决-NH2去向的主要途径。
尿素循环与TCA的关系:草酰乙酸、延胡素酸(联系物)。
肝昏迷(血氨升高,使α-酮戊二酸下降,TCA受阻)可加Asp或Arg缓解。
3) 生成尿酸(见核苷酸代谢)
尿酸(包括尿素)也是嘌呤代谢的终产物。
4、 氨基酸碳架的去向
20余种aa有三种去路
(1)氨基化还原成氨基酸。
(2)氧化成CO2和水(TCA)。
(3)生糖、生脂。
20余种a.a的碳架可转化成7种物质:丙酮酸、乙酰CoA、乙酰乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸。它们最后集中为5种物质进入TCA:乙酰CoA、α-酮戊二酸、琥珀酰CoA、延胡索酸、草酰乙酸。
1) 转变成丙酮酸的途径
Ala、Gly、Ser、Thr、Cys形成丙酮酸的途径
(1)、 Ala 经与α-酮戊二酸转氨(谷丙转氨酶)
(2)、 Gly先转变成Ser,再由Ser转变成丙酮酸。
Gly与Ser的互变是极为灵活的,该反应也是Ser生物合成的重要途径。
Gly的分解代谢不是以形成乙酰CoA为主要途径,Gly的重要作用是一碳单位的提供者。
Gly + FH4 + NAD+ → N5,N10-甲烯基FH4 + CO2 + NH4+ + NADH
(3)、 Ser 脱水、脱氢,生成丙酮酸(丝氨酸脱水酶)
(4)、 Thr 有3条途径
① 由Thr醛缩酶催化裂解成Gly和乙醛,后者氧化成乙酸 → 乙酰CoA。
(5)、 Cys 有3条途径
① 转氨,生成β-巯基丙酮酸,再脱巯基,生成丙酮酸。
② 氧化成丙酮酸
③加水分解成丙酮酸
2) 转变成乙酰乙酰CoA的途径
Phe、Tyr、Leu
(1)、 Phe → Tyr → 乙酰乙酰CoA
Phe、Tyr分解为乙酰乙酰CoA和延胡索酸的途径
(2)、 Tyr
产物:1个乙酰乙酰CoA(可转化成2个乙酰CoA。),1个延胡索酸,1个CO2 ,
(3)、 Leu
产物:1个乙酰CoA,1个乙酰乙酰CoA,相当于3个乙酰CoA。
反应中先脱1个CO2 ,后又加1个CO2 ,C原子不变 。
(4)、 Lys
产物:1个乙酰乙酰CoA,2个CO2 。
在反应途中转氨:a. 氧化脱氨 , b. 转氨
(5)、 Trp
产物:1个乙酰乙酰CoA,1个乙酰CoA,4个CO2 ,1个甲酸。
3) α-酮戊二酸途径
Arg、His、Gln、Pro、Glu形成α-酮戊二酸的途径
(1)、 Arg 产物:1分子Glu,1分子尿素
(2)、 His 产物:1分子Glu,1分子NH3 ,1分子甲亚氨基
(3)、 Gln 三条途径
①. Gln酶: Gln + H2O → Glu + NH3
② Glu合成酶: . Gln+α-酮戊二酸 + NADPH → 2Glu + NADP+
③ 转酰胺酶:Gln+α-酮戊二酸 → Glu + r-酮谷酰氨酸 → α-酮戊二酸 + NH4+
(4)、 Pro 产物:Pro → Glu
Hpro → 丙酮酸 + 丙醛酸
4) 琥珀酰CoA途径
Met、Ile、Val转变成琥珀酰CoA
(1)、 Met 给出1个甲基,将-SH转给Ser(生成Cys),产生一个琥珀酰CoA
(2)、 Ile 产生一个乙酰CoA和一个琥珀酰CoA
(3)、 Val
5)草酰乙酸途径
Asp和Asn可转变成草酰乙酸进入TCA,Asn先转变成Asp(Asn酶),Asp经转氨作用生成草酰乙酸.
6)延胡索酸途径
Phe、Tyr可生成延胡索酸。
生糖氨基酸与生酮氨基酸
生酮氨基酸:Phe、Tyr、Leu、Lys、Trp。在分解过程中转变为乙酰乙酰CoA,后者在动物肝脏中可生成乙酰乙酸和β-羟丁酸,因此这5种a.a.称生酮a.a.
生糖氨基酸:凡能生成丙酮酸、α-酮戊二酸、琥珀酸、延胡索酸、草酰乙酸的a.a.都称为生糖a.a,它们都能生成Glc。
而Phe、Tyr是生酮兼生糖a.a。
5、 由氨基酸衍生的其它重物质
1)由氨基酸产生一碳单位
一碳单位:具有一个碳原子的基团,包括:亚氨甲基(-CH=NH),甲酰基( HC=O-),羟甲基(-CH2OH),亚甲基(又称甲叉基,-CH2),次甲基(又称甲川基,-CH=),甲基(-CH3)
一碳单位不仅与a.a.代谢密切相关,还参与嘌呤、嘧啶的生物合成,是生物体内各种化合物甲基化的甲基来源。
Gly、Thr、Ser、His、Met 等a.a.可以提供一碳单位。
一碳单位的转移靠四氢叶酸(5,6,7,8-四氢叶酸),携带甲基的部位是N 5、N 10
2) 氨基酸与生物活性物质
(1)、 Tyr与黑色素
(2)、 Tyr与儿茶酚胺类
可生成多巴、多巴胺、去甲肾上腺素、肾上腺素,这四种统称儿茶酚胺类。前二者是神经递质,后二者是激素
Tyr形成多巴、多巴胺、去甲肾上腺素、肾上腺素
(3)、 Trp与5-羟色胺及吲哚乙酸
Trp形成5-羟色胺及吲哚乙酸
5-羟色胺是神经递质,促进血管收缩
(4)、 肌酸和磷酸肌酸(Arg、Gly、Met)
肌酸和磷酸肌酸,在贮存和转移磷酸键能中起重要作用。它们存在于动物的肌肉、脑、血液中。Arg、Gly、Met形成磷酸肌酸
肌酸合成中的甲基化:S-腺苷Met
(5)、 His与组胺
His脱羧生成组胺,是一种血管舒张剂,在神经组织中是感觉神经的一种递质。
(6)、 Arg → 水解 → 鸟氨酸 → 脱羧 → 腐胺 → 亚精胺 → 精胺
(7)、 Glu与r-氨基丁酸
Glu本身就是一种兴奋性神经递质(还有Asp),在脑、脊髓中广泛存在。Glu脱羧形成的r-氨基丁酸是一种抑制性神经递质。
(8)、 牛磺酸和Cys
Cys 的SH氧化成-SO3-,并脱去-COO - 就形成了牛磺酸,牛磺酸与胆汁酸结合,乳化食物。
6、 氨基酸代谢缺陷症
苯丙酮尿症(PKU)
三、 氨基酸合成代谢
1、 氨基酸合成中的氮源和碳源
1) 氮源(无机氮不行)
(1)生物固氨(微生物)
a.与豆科植物共生的根瘤菌
b.自养固氮菌 兰藻
在固氮酶系作用下,将空气中的N2固定,产生NH3
(2)硝酸盐和亚硝酸盐 (植物、微生物)
(3)各种脱氨基酸作用产生的NH3(所有生物)
2) 碳源
直接碳源是相应的α-酮酸,植物能合成20种a.a.相应的全部碳架或前体。人和动物只能直接合成部分a.a.相应的α-酮酸。
主要来源:糖酵解、TCA、磷酸已糖支路。
必需氨基酸:Ile、Leu、Lys、Met、Phe、Thr、Trp、Val、(Arg、His)
3) 植物、部分微生物a.a.合成方式
①α-酮戊二酸衍生类型 Glu、Gln、Pro、Arg、Lys(蕈类、眼虫)
与a.a.分解进入α-酮酸的途径比较,少了一种a.a.,即His。
②草酰乙酸衍生类型 Asp、Asn、Met、Thr、Ile(也可归入丙酮类)、Lys(植物、细菌)
经TCA中间产物(α-酮戊二酸、草酰乙酸)可合成10种a.a.,即Glu、Gln、Pro、Arg、Asp、Asn、Met、Thr、Ile、Lys。
③丙酮酸衍生类型 Ala、Val(Ile)、Leu
④3-磷酸甘油酸衍生类型 Ser、Gly、Cys
经酵解中间产物(3-磷酸甘油酸、丙酮酸),可合成Ser、Cys、Gly、 Ala、Val、Leu等6种a.a。
⑤经酵解及磷酸戊糖中间产物(磷酸烯醇丙酮酸、4-磷酸赤藓糖),可合成Phe、Tyr、Trp等3种芳香族a.a。
⑥His有自己独特的合成途径,与其它氨基酸之间没有关系
2、 脂肪族氨基酸生物合成途径
1) α-酮戊二酸衍生类型(Glu、Gln、Pro、Arg、Lys(蕈类、眼虫))
(1)、 Glu的合成
由α-酮戊二酸与游离氨,经L-Glu脱氢酸催化。对于植物和微生物,氨的来源是Gln的酰胺基。
(2)、 Gln的合成
由α-酮戊二酸形成Glu,由Glu可以进一步形成Gln,
Gln合酶是催化氨转变为有机含氮物的主要酶,活性受8种含氮物反馈调控:
氨基Glc-6-P、Trp、Ala、 Gly、 His和CTP、 AMP、氨甲酰磷酸。
除Gly、Ala,其余含氮物的氮都来自Gln。
(3)、 Pro的合成 (Glu环化而成)
(4)、 Arg合成
(5)、 Lys合成
① α-酮戊二酸衍生型(蕈类、眼虫)
② 天冬氨酸、丙酮酸衍生型(植物、细菌)
2) 草酰乙酸衍生类型(Asp、Asn、Met、Thr、Ile、Lys(植物、细菌))
(1)、 Asp合成
(2)、 Asn合成(转移酰胺基)
哺乳动物
(3)、 Met合成
(4)、 Thr合成
Lys、Met、Thr合成中,有一段共同途径,即生成Asp-β-半醛,是一个分枝点化合物。
(5)、 Ile合成 (与Val极为相似)
Ile的合成途径与Val极为相似。
6个C中4个来自Asp(Asp → Thr),2个来自丙酮酸,所以也可以归入丙酮酸衍生型。
(6)、 Lys(植物、细菌) P267 图17-5
3) 丙酮酸衍生型(Ala、Val(Ile)、Leu)
4) 3-磷酸甘油酸衍生型(Ser、Gly、Cys)
3、 芳香族氨基酸及His的生成合成
1) Phe、Tyr、Trp的合成
分枝酸 : 2磷酸烯醇丙酮酸,1个赤藓糖4-P
2)His合成
本章重点:脱氨的几种方式;氨的去路;尿素的合成;氨的转运;脱氨后碳架的去向;a.a.合成中的碳源氮源;Gln、Glu合成;一碳单位及作用
来尚学教育现已开通线上辅导课程,名师授课、专家答疑、更有定制科学复习计划!点击进入: 来尚学教育